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INTRODUCTION

Bak, Tang, and Weisenfeld (ref 1) (BTW) introduced the concept of self-organized criticality
(SOC) to explain power-law distributions and flicker noise in events associated with spatially extended.
dissipative, dynamical systems such as earthquake faults. Jensen, Christensen, and Fogedby (ref 2) (JCF)
clarified the analysis connecting power-law dependences and power spectral densities.

SOC has been explored through computer simulations of sandpile dynamics (ref 1), plastic flow in
metals (ref 3), and earthquakes (ref 3). Experimental investigations include studies of actual sandpile
dynamics (ref 4). sliding friction (ref 5), magnetic transitions in garnet films (ref 6), and the magnetic
Barkhausen effect in an amorphous ferromagnetic alloy (ref 7).

Barkhausen phenomena appear to be ideal for description in te'ms of SOC and have many
features in common with other SOC-related processes such as plastic deformation in metals and slip-stick
at earthquake faults. In ferromagnets, (magnetic) hysteresis is produced by magnetic domains and their
response to applied fields: for low applied fields, kinetic barriers permit only small reversible domain wall
extensions and the system remains magnetically "elastic"; when the applied field is large enough to
overcome these barriers (coercive force), the system enters a magnetically "plastic" regime characterized by
large, random, irreversible domain wall jumps. These jumps generate Barkhausen noise, which may be
detected by a coil placed near the sample. Magnetic hysteresis is analogous to mechanical hysteresis.

A brief summary of the results ot a study of the Barkhausen effect as an example of SOC in three
ferromagnetic materials: an iron base glassy metal, polvcrvstalline iron, and a nickel base polvcrvstalline
alloy, alumel, is presented herein. A more extensive report has been published elsewhere (ref 8).

The data on the three materials are consistent with SOC. The distributions of pulse energy
releases are well described by power laws with exponents similar to the Gutenberg-Richter law for
earthquake distributions and the power spectral densities vary with frequency f as 1/fl (flicker noise).
Furthermore, the distributions of pulse durations and areas also follow power laws, and the pulse
distributions exhibit "size-effect" cutoffs at large amplitudes similar to those seen in sandpile simulations
(ref 9).

EXPERIMENTAL

The amorphous alloy is a nominal 2-mil thick ribbon of Metglas 2605S (Fe,,B3,Si,9 ) from Allied-
Signal cut into approximately 2-mm by 20-mm strips. The iron and alumel (Ni95AIMn.) specimens were
assorted lengths of 5 mil thermocouple wire obtained from Omega Engineering.

The samples were placed within a pickup coil located at the center of an air-core solenoid. A
signal generator provided the sinusoidal current to the solenoid, which produces a field that continuously
drives the sample through its B-Il loop. The pickup coil registered trains of pulses that were amplified
and recorded by a digital oscilloscope. The scan rate was selected to maintain suitable separation of
individual pulses, while also providing an adequate number of pulses per train for analysis (typically 200).
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THEORY

The central idea of SOC is that extended, dissipative, dynamical systems tend to evolve into
critical states in which chain reactions of all sizes in time and space propagate through the system.
Computer simulations indicate that the main features of SOC systems are power-law distributions of chain
reaction sizes, LI' power spectral densities, and fractal structures.

JCF show that the power spectral density of a train of uncorrelated pulses (where each pulse
represents a chain reaction) can be expressed as

S(O - f d.rG(@r)sin 2(2nft) il)(n,2 o

where r is the pulse repetition rate and G(T) is a weighted distribution of lifetimes, defined as

G(7) = f dA P(A,T) [A/T]2  (2)

0

where P(A,T) is the joint probability for a pulse to have area A and length T. The equations hold for any
distribution of uncorrelated pulses.

The present data are consistent with a simple power-law distribution of pulse lifetimes (as
expected with SOC) modified by a sharp cutoff "size-effect." That is,

G() = TH(T-T ) , for to < T< co( 3)

where H(x) is the f-Heaviside function and the "size-effect" cutoff on pulse size is T.. Such distributions of

lifetimes yield (ref 10) power spectral density having the following form:

1. for
li/o < f < lIto , S(j) _ f-( 3+g) when M < 1 4a)

f 2  when a > -1 (4b)

2. for

f < lITo , S(f) = constant. (4c)

JCF obtained similar results for an exponential cutoff "size-effect."
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ANALYTIC PROCEDURE

The following steps were followed:

1. A systematic procedure for selecting a baseline and critical signal level was adopted to
allow an unambiguous definition of individual pulses.

2. Pulse durations, areas. and energies were computed for each pulse.

3. Joint probability distributions P(A.T) and distributions of durations G(T) were computed
from the area and duration data.

4. Power spectral densities were also determined directly via Fourier transform techniques
(FFT algorithms, etc.).

RESULTS

A sampling of typical results is presented in this section. Figure 1 shows the distribution of
Barkhausen pulse energies for the Metglas specimen: the power law with sharp cutoff at large pulse
energies is illustrated. The power-law exponent is -1.60. Similar results are obtained for the iron and
alumel samples with exponents -1.44 and -1.58. respectively. The distributions of pulse areas. durations.
and weighted distributions of lifetimes (Eq. (2)) all follow similar power-law dependences.
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Figure I. Distribution of pulse energies for the Metglas sample.

The results of Figure 2 illustrate the excellent atgreement between power spectra for Metglas
c()mputed from pulse distributions via Eq. (I) and that obtained with FFT: the form of the power spectral
density is consistent with Eq. (4).
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Figure 2. Power spectral density from Eq. (1) (circles)
and from FFT (line) for Metglas.

DISCUSSION

Power-law distributions and Ip dependences in the power spectra in these three very different
ferromagnets suggest that the Barkhausen effect is an example of SOC phenomena. Furthermore, the
resemblance of the Barkhausen distribution of energies and the distribution of earthquake energies (ref 3)
suggests that they may belong to the same universality class.

I lowever, another interpretation may be viable. As Mandelbrot (ref 11) has emphasized, fractal
structure or fragmentation also gives rise to power-law distributions. Thus, complex pre-existing
micrs;structre and the distribution of magnetic domains within the microstructure could follow a power
law, which could then give rise to the observed power-law pulse distributions in the Barkhausen effect
independent of SOC. (For example, Hornbogen (ref 12) has demonstrated the applicability of fractals to
microstructures in metals.) Since Eqs. (1) through (4) would still apply, the power spectral density would
also have the l/4 form characteristic of SOC under this interpretation. We will examine this possibility in
future work.
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